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ABSTRACT 

Manpower management and retention has been an issue for the military since 

the military became an all-volunteer force in 1973. Annually, the Bureau of 

Personnel Metrics and Analytics Branch (BUPERS-34) predicts Navy 

reenlistment rates and sets numeric reenlistment goals for the upcoming fiscal 

year.  These goals ultimately take into account end strength considerations as 

well as Enlisted Community Manager requirements.  BUPERS-34 uses linear 

regression to forecast what the expected reenlistment rate will be, given current 

conditions; if no force shaping actions (e.g., reduce accessions, change 

personnel policies) are taken.  If the forecasted reenlistment rate is different than 

requirements from an end strength/community management perspective, then 

the force shapers in the Manpower, Personnel, Training and Education Policy 

Division (N13) have a signal that steps may need to be taken to bring the two in 

line. In this thesis, the current BUPERS-34 Navy reenlistment prediction method 

is evaluated and alternative models to improve the prediction accuracy are 

suggested. Results of the analysis suggest the removal of several variables from 

the current model, due to lack of statistical significance, and the addition of 

Selected Reenlistment Bonus as a predictive variable for reenlistment. 
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EXECUTIVE SUMMARY 

Manpower management and retention has been an issue for the military since 

the inception of the all-volunteer force in 1973. A large body of research has 

been conducted to define, measure, and discover contributing factors related to 

retention and attrition. The Bureau of Naval Personnel Metrics and Analytics 

Branch (BUPERS-34) uses multivariate linear regression to fit models that 

predict the upcoming fiscal year reenlistment for specific enlisted zones. This 

thesis focuses on three specific enlistment zones: A, B, and C, which are based 

on completed years of service. While the current regression models were 

originally based on sound research, the models have become somewhat 

outdated and are in need of evaluation. In this thesis, the current BUPERS-34 

Navy reenlistment prediction method is evaluated and alternative models to 

improve the prediction accuracy are suggested. 

Three main problems are identified with the current reenlistment rate 

regression models. First, the current models potentially violate the mathematical 

assumptions that the models are based on. Second, the models are shown to 

contain insignificant variables. Finally, several of the variables in the current 

models require predictions as inputs in order to make forecasts for future values, 

thus creating additional noise in the forecasts.  

This thesis uses several statistical techniques to evaluate the current 

problems with the forecasting models and recommends alternative models. The 

models suggested are more robust than the current BUPERS-34 prediction 

models and provide improved forecasts with lower prediction variability. The 

alternative models eliminate insignificant variables, improve model fit, and 

incorporate additional compensation (e.g., Selective Retention Bonus) that effect 

zone reenlistment rate predictions.  
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I. INTRODUCTION  

Annually, the Bureau of Personnel Metrics and Analytics Branch 

(BUPERS-34) predicts Navy reenlistment rates and numeric reenlistment goals 

as part of establishing the following fiscal year retention goals.  The BUPERS-34 

forecasts what the expected reenlistment rate will be, given current conditions, if 

no force shaping actions are taken (e.g., reduce accessions, change personnel 

policies) to change the expected behavior of sailors.  If the forecasted 

reenlistment rate is different from the rate required to meet end strength, then the 

force shapers in the Manpower, Personnel, Training, and Education Policy 

Division (N13) have a signal that steps may need to be taken to bring the two in 

line. 

This thesis analyzes the current BUPERS-34 Navy Reenlistment Rate 

Prediction model and considers alternative methods that improve the accuracy 

and validity of the model. 

A. PURPOSE 

The Chief of Naval Personnel (CNP) is a three-star admiral in charge of  

Navy's manpower readiness. Dual-titled, the CNP also serves as Deputy Chief of 

Naval Operations (Manpower, Personnel, Training & Education) and oversees 

the Bureau of Naval Personnel (BUPERS), Navy Personnel Command, and the 

Navy Manpower Analysis Center. As one of four Deputy Chiefs of Naval 

Operations (DCNO) (Figure 1), with the identification of N1, the DCNO performs 

all strategy and resource policies and serves as a single resource sponsor for all 

manpower and training program matters (Navy.mil, 2007). The N1 also performs 

all Capitol Hill related duties, including all Congressional testimony for matters 

pertaining to the Manpower, Personnel, Training, & Education command. 

 



 

Figure 1.   Chief of Naval Operations Organizational Chart (From Navy.mil, 2010) 

Each fiscal year (FY), the N1 establishes reenlistment goals to best 

position the navy to meet end strength requirements, while responding to likely 

factors that will shape Navy’s retention efforts. End strength requirements are 

fiscal year military personnel authorizations given by Congress under Title 10, 

United States Code (Defense Technical Information Center [DTIC], 2009). The 

National Defense Authorization Act prescribes the number of personnel 

authorized. This number usually changes each FY based on budget and 

personnel requirements. The requirement is that the end strength obligation is 

met on 30 September each FY. For FY 2010, the Secretary of Defense 

requested from Congress specific service personnel authorizations as 

recommended by the respective service secretaries.  Navy end strength received 

authorization for 328,800 active duty personnel (See Table 1). Subsequently, in 

 2
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order for Navy to meet the congressional end strength authorization for each 

fiscal year, Navy determines their reenlistment goals by reenlistment zone (as 

defined and explained in the next paragraph) and releases those goals in a Navy 

Administrative Message (NAVADMIN).  

   FY 2009    FY 2010    Change from   

 Service    Authorized   Request   
 Committee 
Recommendation  

FY2009 
Authorized   

 
FY201
0 
Reque
st  

 Army     532,400    547,400    547,400    0   
 
15,000  

 Navy    326,323    328,800    328,800    0    2,477  
 USMC  194,000    202,100    202,100    0    8,100  

 Air Force    317,050    331,700    331,700    0   
 
14,650  

DoD  1,369,773   1,410,000   1,410,000    0   
 
40,227  

Table 1.   FY 2010 Military Personnel Authorizations (From DTIC.mil, 2010) 

1. FY 2009 Retention Message 

NAVADMIN 348/08 (Ferguson, 2008b) and 333/09 (Ferguson, 2009) 

updated the definition of reenlistment zones and standardized enlisted retention 

measures of effectiveness for all zones. Enlistment zones are specific length of 

service (LOS) parameters (Table 2) used to set Navy retention goals. The zones 

are shown in Table 2. 

Zone A Less than 6 years of service (YOS) 

Zone B    6 to less than 10 YOS 

Zone C    10 to less than 14 YOS 

Zone D   14 to 20 YOS 

Zone E    Greater than 20 YOS 

Table 2.   Reenlistment Zones 
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Based on the zones shown in Table 2, NAVADMIN 348/08 summarized 

the Navy’s attainment of FY-08 retention objectives (Table 3). Both reenlistment 

goal and actual values are presented in Table 3. The Navy exceeded retention 

goals established for FY08 across zone A and B and was short in zone C. Actual 

numeric reenlistment rates exceeded their goal by 310 reenlistments resulting in 

26,510 total reenlistments compared to a goal of 26,200.  Strong command and 

leadership attributed to the navy attaining 101 percent of their total numeric 

reenlistments for sailors in zones A through C (Ferguson, 2008b). 

Zone Goal Actual 
ZONE A (0 TO 6 YEARS OF SERVICE) 48 PERCENT 50.7 PERCENT

ZONE B (6 TO 10 YEARS OF SERVICE) 58 PERCENT 59.8 PERCENT
ZONE C (10 TO 14 YEARS OF SERVICE) 82 PERCENT 80.2 PERCENT

Table 3.   All Navy FY-08 Reenlistment Rate (From Ferguson, 2008b) 

The BUPERS-34 reenlistment rate prediction and numeric reenlistment 

goals for zones A, B, and C have a great impact on the ability for the navy to 

sustain targeted manpower and readiness. Good predictions can assist in 

reducing personnel overages or underages, and subsequent costs associated 

with missing the target end strength. Any improvement in BUPERS-34 ability to 

predict reenlistment, as discussed later, may result in a greater manpower cost 

savings and/or readiness state. 

The following narrative best describes leadership’s desired direction for 

achieving Navy retention goals: 

Because we are becoming smaller, with more demands and a 
wider range of missions, the Navy must continue to shape the force 
to achieve the best “fit.” “Fit” means having a trained sailor, at the 
right place, at the right time. Achieving fit through retention means 
moving beyond the aggregate reenlistment rate goals towards 
meeting retention requirements based on rating and length of 
service. Individual goals are essential in influencing the desired 
reenlistment behavior for our most critical ratings. (Ferguson, 
2008b, p. 1) 
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Reenlistments are important to delivering target end strength. A large part 

in planning for the future of the Navy is related to predicting how many sailors 

there will be each year. Enlistments and reenlistments are part of this planning. 

BUPERS-34 utilizes simple forecasting tools in order to predict future 

reenlistments. This thesis evaluates the predicative capability of the Zone A 

through C reenlistment models and suggests methods for improvement. 

Improved predictions can ultimately result in cost savings for the Navy.  

B. MOTIVATION FOR THESIS 

The quote “all models are wrong, some are useful" by George Box (Box & 

Draper, 1987), the 20th century statistician, is a well-known quote in statistics 

and may best describe the challenge behind evaluating the BUPERS-34 

reenlistment rate prediction model and necessity to review and update the model. 

BUPERS-34 reenlistment rate predictions are aggregate rates. Their FY09 

reenlistment rate predictions for zones A, B, and C on first glance (refer to Table 

2 for zone descriptions and Table 3 for FY09 predictions), appear to be relatively 

close to the actual rates. On average, the FY09 predictions when compared to 

actual reenlistments overshoot by approximately two percentage points for all 

three zones, which is significant with a large number of reenlistments. However, 

measuring BUPERS-34 real prediction accuracy is much more challenging 

because the prediction serves as a baseline to implement “levers” at the 

beginning of the FY. These levers, or manpower retention actions (e.g., selected 

reenlistment bonus, approving or disapproving waivers), continually drive 

reenlistment rates as close to the respective FY numeric manpower goals per 

zone by reevaluating the levers in meeting targeted monthly goals. In May 2009, 

Rear Admiral (RADM) Holloway, Manpower, Personnel, Training & Education 

Policy Division (N13) said, “we review each rating weekly with the community 

managers and take a monthly look at how we are looking with re-enlistments 

before making adjustments. We’re carefully watching all re-enlistment and 

retention behavior- we don’t want to get caught flat footed” (Faram, 2010, p.30). 
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Overshooting FY-09 goals by one percent, or approximately 310 sailors, is 

costly. Using a conservative example, in 2006, Table 4 shows that the 

Congressional Budget Office (CBO) estimated that the regular military 

compensation for a single E-5 with six years experience was approximately 

$45,000. Subsequently, the total cost to the Navy for overshooting their FY-09 

manpower goals by 310 sailors most likely exceeded $14 million (310 x $45,000 

[2006 dollars]). This figure does not account for any bonuses, special pays, or 

other non-cash or deferred benefits such as retirement pay and health care that 

would increase total compensation to approximately $100,900 per sailor, a cost 

of over $31 million to the Navy. Additionally, overshooting retention goals does 

not take into account unnecessary bonuses (overpaying to stay).  

(2006 Dollars) 

Pay Grade E-1 E-2 E-3 E-4 E-5 E-6 E-7 E-8 E-9 
Typical Age 18 19 20 22 25 31 37 40 44 

Average 
Years of 

Experience <2 <2 <2 3 6 12 18 21 25 

Compensation: Enlisted (Single) 

Cash 29,700 32,000 32,900 37,200 45,000 54,000 63,400 72,400 85,900 
Noncash 

and 
deferred 

cash 25,300 26,900 27,600 31,200 35,600 41,800 48,500 54,300 64,900 
Total 54,900 58,900 60,500 68,400 80,600 95,700 111,900 126,600 150,700 

Compensation: Enlisted (Married with children) 

Cash 32,800 34,700 36,300 40,400 47,200 56,800 65,200 72,800 89,600 
Noncash 

and 
deferred 

cash 37,300 38,900 39,700 49,200 53,700 59,800 64,800 70,200 81,100 

Total 70,100 73,600 76,000 89,700 100,900 116,600 130,000 143,000 170,700 

Table 4.   Estimated Compensation for Enlisted Personnel (From CBO, 2007) 

Undershooting is also severe because of the potential impact to the loss of 

readiness and ability to meet mission. Under estimating goals has costs that are 

more difficult to measure because the remedy may result in over compensation 
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(e.g., overcompensating sailors to stay or return), low morale (e.g., increased 

operations tempo due to manpower shortages), or poor personnel fit (e.g., 

retaining the wrong sailors) to meet mission. 

The financial and/or readiness cost to the Navy for overshooting or 

undershooting their reenlistment rate and retention goals is significant. Improving 

the accuracy and validity of the current prediction model will minimize these costs 

and inefficiencies to attain the target goals. However, it is challenging to measure 

the accuracy of the BUPERS-34 Reenlistment Rate Prediction model. This is 

because the model predicts zone reenlistment rate behavior prior to the next FY 

before many retention levers or force shaping actions (e.g., bonus levels, 

Perform to Serve monthly retention boards, and high year tenure waiver 

approvals or disapprovals) are implemented or withdrawn as needed to attain the 

targeted end strength by the end of the that FY. This makes the original 

reenlistment rate predictions difficult to evaluate on their own because they are 

“fitted,” and, therefore, the BUPERS-34 prediction accuracies are open for 

interpretation. 

An evaluation and validation of the reenlistment rate model and numeric 

retention goals is appropriate and justified in an ever changing and dynamic 

environment. This thesis assesses the reliability and robustness of the BUPERS-

34 Reenlistment Rate Prediction model to meet targeted retention goals, and 

proposes a new and improved model.  

C. PROBLEM STATEMENT AND THESIS OUTLINE 

The current multi-variate linear regression model developed and used by 

BUPERS-34 to predict reenlistment rates for zones A, B, and C, is analyzed in 

this thesis. Recommendations for changes in the model that improve accuracy 

and precision of the predictions are made. Chapter II provides a literature review 

that investigates previous studies regarding retention models and discusses 

different approaches regarding enlisted behavior.  Chapter III discusses the Navy 

Retention Monitoring System (NRMS) database that is used for retention 
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analysis and describes the BUPERS-34 Reenlistment Rate Prediction model. 

Chapter IV evaluates the current reenlistment rate prediction model used by 

BUPERS-34. Chapter V discusses new proposed prediction models. Chapter VI 

analyzes the subsequent data output, derives a conclusion, and proposes follow-

on research. 
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II. RELATED LITERATURE 

Manpower management and retention has been an issue for the military 

since the military became an all volunteer force in 1973. A large amount of 

research has been conducted to define, measure, and discover contributing 

factors related to retention and attrition in qualitative and quantitative reports, 

studies, and papers. Much of the research contained in the literature makes great 

effort to explain the numerous factors contributing to retention.  

In this thesis, the Navy’s reenlistment prediction model is analyzed. 

Reenlistment and retention are sometimes used interchangeably, but do have a 

difference that should be discussed. Retention rates are the number of personnel 

retained out of a specified group of people. For example, retention rate can apply 

to the organization as a whole. Reenlistment rates, a subset of retention rates, 

refer to a specific group of people that are eligible for reenlistment during 

specified periods. The groups of people used for calculating reenlistment rates 

are, in general, those that have served their obligated length of service and have 

the option to either reenlist or leave the service. This thesis assumes that factors 

contributing to retention and reenlistment are somewhat similar, thus the 

literature review discusses models focusing on both retention and reenlistment.  

This literature review focuses on two areas of related military manpower 

research and its effect on retention: military non-compensation retention models 

and compensation retention models. Non-compensation models are models that 

investigate the effects of non-compensation factors (e.g., variables) such as 

unemployment rate and operation tempo that may be significant to retention. 

Compensation models investigate the significance of military pay, civilian pay, 

bonuses and other forms of compensation that may be significant to retention. 

The current BUPERS-34 Reenlistment Rate Prediction model is a non-

compensation model. This thesis investigates adjusting the model to include 

bonuses (e.g., Selective Reenlistment Bonus [SRB]) at the aggregate level and 
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varying the periods of which the data is modeled to analyze and provide the 

statistical variation necessary to produce significant estimates to predict the 

reenlistment rate. 

A. MILITARY NON-COMPENSATION RETENTION MODELS 

The United States military has experienced a reduction in force since the 

end of the first Gulf War in 1991. Subsequently, non-compensation retention 

models and/or variables have been examined to see their effect on reenlistment 

retention. In the economics literature in particular, there is a focus on looking at a 

metric called elasticity. Elasticity is the ratio of the percent change in one variable 

to the percent change in another variable. For example, pay elasticity for 

reenlistment, measures the percent change in reenlistment associated with a 1-

percent increase in pay. 

Goldberg (1986) provides estimates of the effect of unemployment on 

enlisted retention. The Goldberg study looks at data from FY 1977 to FY 1984 

where large swings in the unemployment rate make estimates of unemployment 

effects on retention more critical and provide the statistical variation necessary to 

produce significant estimates. A time series analysis was used to compare the 

effects of military pay and unemployment rate on retention rate. It resulted in the 

appearance that either variable had a significant effect on retention trends but the 

separate effects were impossible to distinguish. When rate specific SRBs were 

included in military pay, military pay was distinguishable from unemployment rate 

effects on retention. Unemployment was found to have a significant effect upon 

the reenlistment rate for seven of the nine rating groups studied, and a significant 

effect upon both the extension rate and the total retention rate for all nine rating 

groups. However, because the pay elasticities (which include SRBs) are three to 

five times as large as the unemployment elasticities (e.g., the percent change in 

reenlistment associated with a 1 percent increase in unemployment), the 

unemployment rate may be offset by much smaller percentage increases in 

 

http://en.wikipedia.org/wiki/Percent_change
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military pay. This study reports the statistically significant effect of unemployment 

on retention. However, unemployment rate is of only secondary importance when 

compared to military pay. 

Budding et al. (1992) concluded that retention models are sensitive to the 

specification of individual promotion opportunities at the end of their first term of 

enlistment. Expected time to E5 promotion has a significant effect on first-term 

retention in both the pay ratio and the annualized cost of leaving (ACOL) 

formulations of the retention model. Other things equal, a 10 percent promotion 

slowdown is associated with 14 percent and 8 percent reductions in Army and Air 

Force retention rates, respectively. The results show that traditional retention 

approaches have not been adequately controlled for promotion tempo and that 

promotion could be used to complement military pay and bonus policies in 

retaining quality personnel in hard-to-find-skills. 

Hansen and Wenger (2003) examined the costs and benefits of retention 

as a way to develop rating-specific reenlistment goals for zone A enlisted 

personnel. Each rating identifies and quantifies the primary costs and benefits to 

the Navy of higher reenlistment. For example, if the benefits of higher 

reenlistment (e.g., retention of more experienced sailors, increased manpower) 

are greater than the costs, the cost-effective level of reenlistment is higher than 

its current level. The results indicate that economic conditions do affect the cost-

effective level of reenlistment and that a deterioration of the civilian economy will 

generate higher retention without any need to increase reenlistment bonuses. 

Additionally, the study found that although the Navy still has to pay higher 

seniority costs from increased retention, the value of the additional experience, 

combined with recruiting and training cost savings, outweighs the cost of the 

higher reenlistment rate. In contrast, improvements in economic conditions act 

like a "tax" on SRB effectiveness. For some ratings, it is cost-effective to raise 

SRBs to offset the impact of economic conditions. For other ratings, however, it 

would be prohibitively expensive to return reenlistment rates to previous levels. 
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Questor, Hattaingadi and Shuford (2006) examined the effect of U.S. 

Marine Corps deployment tempo on Marine reenlistment behavior in FY-04. They 

find that first-term Marines making reenlistment decisions in FY-04 who deployed 

to a crises area and spend more total days deployed than their peers have lower 

reenlistment rates. Additionally, they find that deployment tempo negatively 

affects Marines without dependents most significantly. The study results 

indicates no relationship between days deployed and reenlistment decisions for 

second and third term Marines, and officers. 

B. MILITARY COMPENSATION RETENTION MODELS 

Concern about the retention of active-duty military personnel  prompted 

numerous proposals to improve military pay and benefits in the 1980s. Several 

enlisted retention models were implemented and/or considered by the armed 

services.  

To measure the effect of changes in military compensation on 

reenlistment decisions, the Congressional Budget Office (CBO) developed a 

military retention model. The CBO military retention model predicts the effects on 

retention of future compensation changes by assuming that reenlistment 

decisions are motivated by military and civilian compensation over an individual's 

entire remaining career (CBO, 1981). The model is formulated using a weighted 

average of future pays, called "perceived pay," where the weights are both 

discount rates and the person's probability of remaining in the military. This 

model captures the effects only of the largest compensation components (i.e., 

regular military compensation, SRBs, and retirement pay). It asserts that 

retention decisions are motivated by compensation over an individual's entire 

remaining career, and that a pay change over the entire future pay stream should 

exert a strong effect on junior personnel. This study is a technical description of 

the CBO retention model that has been used for several senate and 

congressional reports prior to 1981. The study does not offer any 

recommendations; it concludes that CBO retention model over-predicts enlisted 
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retention rates because of incorrect military pay assumptions for two reasons. 

First, by including only monetary values, it ignores such intangible, but critical, 

factors as an individual’s preference, or "taste," for military service (CBO, 1981). 

Second, it ignores the effect of past compensation practices (e.g., higher SRBs) 

that may lead to whether an individual reenlists again. Warner (1981) conducted 

an analysis on four major models for predicting the effect of military pay on 

retention; the Present Value of the Cost of Leaving (PVCOL) model, the 

Annualized Cost of Leaving (ACOL) model, the Stochastic Cost of Leaving 

(SCOL) model, and the Air Force- Congressional Budget Office model.  All of 

these models are similar in that they attempt to measure military pay relative to 

civilian pay, and “taste” (e.g., likes and dislikes) for staying in the military. They 

differ in their income stream (cost of leaving) to remain in the military for one 

more term and the income stream to leave. The cost of leaving is then related to 

the retention rate. The ACOL and SCOL are more descriptively accurate than 

earlier models, because they measure “taste” for military service and provide 

more sensible predictions than earlier models. The PVCOL model does not 

measure military to civilian compensation differences and the Air Force- CBO 

model over-predicts reenlistment rates. 

The Center for Naval Analyses developed two models for projecting 

enlisted end strength in 1981: the Prophet model, and the ACOL model. The 

Prophet model tracks the distribution of the force by years of remaining obligated 

service, but does not allow reenlistment rates to vary in response to changes in 

compensation. Reenlistment rates are estimated by length of service. 

Conversely, the ACOL model does allow reenlistment rates to vary in response 

to changes in compensation where the reenlistment rate is estimated by the 

effects of compensation on reenlistment but does not track the distribution of the 

force by years of remaining obligated service. Goldberg and Hagar (1981) 

compared the career force projections of these models to actual historical 

experience over the period FY 78–FY 80. They found that the ACOL projections 
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are more accurate than the Prophet projections and, subsequently, adjusting 

reenlistment rates in response to pay changes is more important than tracking 

the force by years of remaining obligated service. 

Trumble and Flanagan conducted a study in 1990 for the Navy Personnel 

Research and Development Center (NPRDC) that reviewed existing forecasting 

and simulation methodologies to improve forecasts of naval officer retention 

rates. Two major types of models were compared, ACOL, which was the official 

forecasting model used by the Office of the Assistant Secretary of Defense, the 

Navy, and the Air Force to provide personnel loss rate forecasts at various levels 

of disaggregation, and Dynamic Retention (DR) models. Both models were 

discussed in detail with respect to the ability to model and evaluate manpower 

policies of interest to NPRDC staff. The DR model was considered the best 

theoretically because it was able to adequately capture the dynamic effects of a 

temporary pay changes. The DR model does so with detailed modeling of an 

officer's entire service career with an underlying "taste for the service" parameter. 

However, the formulation and implementation of the DR model was more costly 

than the ACOL model and required significant improvements, resulting in the 

ACOL model continued usage (Trumble, 1990). 

Goldberg (2001) provides a survey on enlisted retention models from 1973 

to 2001 and offers some analysis and recommendation for future work. 

Goldberg’s survey review is extensive and summarizes the influence of many 

retention models and modeling techniques. The survey’s primary focus of 

enlisted retention models begins with the impact of the ACOL model and its 

influence on other models and statistical techniques from the mid-1970s to 

1990s. The survey then reviews pay elasticity models, the retention effects of 

other variables that are not pay related (i.e., length of deployment, incidence of 

sea duty, and percentage of time spent away while not deployed) and the effect 

of a SRB on those variables. The paper attempts to decompose the variation of 

pay elasticities (e.g., sensitivity analysis in regards to compensation) in terms of 

data handling (e.g., treatment of enlisted ineligibles and extensions), modeling 
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technique, and elasticity composition. Goldberg asserts that many pay elasticity 

models used to forecast retention use different techniques resulting in great 

variations in their forecasts. He concludes by recommending a “controlled 

experiment” to eliminate any confounding differences between the variations of 

several pay elasticity models in order to develop a more precise model. 

The United States Army Research Institute for the Behavioral Sciences 

(ARI) (2005) conducted an analysis on the significance of SRBs on enlisted 

retention by including SRBs into the ACOL model to estimate the financial 

incentive to stay. The model was generated using logistic regression. ARI 

measured the effects of SRBs on reenlistments, at zone A (between 17 months 

and 6 years of active service), Zone B (between 6 and 10 years of active 

service), and Zone C (between 10 and 14 years of active service) at three levels 

of occupational aggregation. The three level are all-Army (i.e., Army as a whole), 

career management field (CMF), and military occupation specialty (MOS). The 

results for Zone A at all levels of occupational aggregation indicate that 

reenlistment bonuses have a positive and statistically significant effect on Zone A 

reenlistments. The magnitude of the effect varied by occupation, but a one-level 

increase in SRB at Zone A typically increases the reenlistment rate by three to 

seven percentage points, depending upon the occupation. The results for Zone B 

are significant at both the CMF and MOS levels. Results for Zone C, where 

reenlistment rates are typically very high, are similar but not as good as the Zone 

A and B results. Additionally, Zone C sometimes relies on higher-level 

occupational aggregations to obtain estimates. 

C. SUMMARY 

As reviewed, military compensation models, such as the ACOL model, 

have been modified many times since their inception in the 1970s to analyze 

their effect on retention. Through their many modifications (e.g., SRB inclusion), 

they continue to remain useful. ACOL models, in particular, have remained 

influential  models used by military analysts as a measurement of pay elasticity 
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and a sailors “taste” to stay in the military (Goldberg, 2001). As well, non-

compensation models and/or variables (e.g., promotion tempo, unemployment 

rate, and economic conditions) have proven useful to measure retention 

behavior; however, several studies imply (e.g., Goldberg, 1986) that econometric 

and/or compensation variables (e.g., ACOL, SRB) have greater significance in 

measuring the variability in military enlisted retention models.  

The purpose of this review is to provide insight into the many methods, 

models, and strategies used to predict reenlistment rates. Predicting a sailor’s 

reenlistment rate is very complex because there is not one dominant method or 

strategy to model retention. Additionally, a sailor’s behavior is nearly impossible 

to predict due to a dynamic and ever changing environment. Retention variables 

and models need continuous analysis and modifications. 

This thesis uses the insights from the related literature as a reference to 

explore improvements to the BUPERS-34 reenlistment rate model’s methodology 

and variable selection. 
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III. BUPERS-34 METRICS AND ANALYTICS BRANCH 

BUPERS-34 has the responsibility to monitor, analyze, predict and report 

enlisted retention and attrition trends. Through N1, their prediction and trend 

analysis provides annual (and monthly) enlisted retention targets (goals) and 

trends to the Fleet and other Echelon II commanders. 

Retention measures (e.g., reenlistment rates) are calculated in the NRMS, 

Navy’s authoritative source of retention (Ferguson, 2008a). This chapter 

introduces the NRMS, discusses the calculation of the Navy’s reenlistment 

model, and provides an example of the use of the reenlistment model for a 

particular fiscal year.  

A. NAVY RETENTION MONITORING SYSTEM 

The Navy Retention Monitoring System (NRMS) is a web-based 

application developed in 2004. It combines the legacy Web based Retention 

Monitoring System (WebRMS) and Navy Enlisted Retention Statistics Reporting 

System (NAVRET) to provide timely and accurate reporting and analysis of 

reenlistment, retention, and attrition data. NRMS expands on the functionality of 

NAVRET and WebRMS to enhance the capability to provide effective and 

efficient reporting and analytical information for staff, program managers, 

decision makers, and fleet units. In addition to information available in WebRMS, 

data contained in the Navy Standard Integrated Personnel System (NSIPS) are 

incorporated into an Enterprise Data Warehouse, from where all NRMS report 

information is drawn (SPAWAR, 2004). 

1. Access and Deliverability 

NAVRET, which was based on a Microsoft Access database, has several 

drawbacks. These drawbacks are: (1) NAVRET is accessed by all users using 

just a single password; (2) it is not available to most Command Career 

Counselors; (3) all historical data has to be downloaded to the local user’s 
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computer; (4) and it does not meet updated security requirements (SPAWAR, 

2004). Subsequently, NRMS has improved security requirements meeting all 

federal and the Freedom of Information Act and information security 

requirements. The Bureau of Naval Personnel Metric and Analysis Branch 

(BUPERS-34) administers the system and user accessibility.  

Additionally, NRMS partitions and restricts data and personal information 

to three user levels: 

a. The Chief of Naval Operations (CNO) N13, Manpower, 

Personnel, Training & Education Policy Division, can access all 

NRMS reports and has full Ad hoc capability within the NRMS Data 

Mart (Enterprise Data Warehouse). Ad hoc capability is available 

for all subordinate commands based on the Administrative Unit 

Identification Code Tree. N13 is able to view the full Social Security 

Number (SSN) of all members.  

b. Career Counselor Level 1 is composed of Center for Career 

Development (CCD) members, all Fleet and Force Counselors, and 

other individuals as defined by the CCD. For comparison purposes, 

these users have the ability to view all delivered reports. Ad hoc 

capability is available for the user’s command and his/her 

subordinate commands. All reports in this level display only the last 

six digits of a member’s SSN.  

c. Career Counselor Level 2 includes those users assigned as 

Command Career Counselors at the unit or command level. Career 

Counselor Level 2 users are able to view only NAVRET based 

NRMS delivered reports. All reports at this level display only the 

last six digits of a member’s Social Security Number (SSN). 

Reports are limited to the last three years of data.  
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2. Functionality 

NRMS provides access to over 10,000 registered navy personnel that may 

retrieve personnel data from 1992 to present for retention reporting using 

business intelligence capabilities (Welgan, 2010). Business intelligence 

capabilities are functions that build quantitative processes for a business, or in 

this case, the Navy to arrive at optimal decisions and to perform analytical 

computations within NRMS and its populated database. These capabilities in the 

business world frequently involve data mining, statistical analysis, predictive 

analytics, predictive modeling, and business process modeling. However, NRMS 

has not fully incorporated all of these analytical and predictive capabilities. 

Instead, NRMS is used most often for the “measurement” component of the 

NRMS business intelligence capability. The measurement program creates a 

hierarchy of performance metrics and benchmarking that informs users (Navy 

leadership, Community Managers, and Command Career Counselors [CCCs]) 

about progress towards retention goals. 

Navy manpower specialists (N13), BUPERS-34, Community Managers, 

and Fleet and Force Counselors monitor reenlistment, retention, and attrition 

trends in numerous categories and monitor the effectiveness of Command 

Retention Programs of subordinate commands. 

CCCs use NRMS to monitor their command’s reenlistment, retention, and 

attrition data in a variety of modes to provide the Commanding Officer and the 

Command Retention Team the information needed to establish and maintain an 

effective Career Information/Retention programs. 

3. Report Types 

Ad hoc reporting is available. These are reports that allow Navy 

manpower specialists (N13) and Career Counselor Level 1 users to create 

reports to gather information that are not covered by NRMS Corporate Reports to 

support analysis. A module, called Business Objects Universe Report, allows the 
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user to generate Ad hoc queries. Users will interact with data using 

representations of information, or “Business Objects,” with which they are 

familiar. Data elements are grouped into folders of logical collections referred to 

as “classes.” Ad hoc reporting is based on classes of personnel data elements 

residing in the NRMS Data Mart (SPAWAR, 2004).  

In general, the most widely used reports are “Corporate Reports.” 

Corporate Reports are prepared reports by the administrator (BUPERS-34) that 

require no additional user manipulation. The standard Corporate reports are the 

12 Month Cumulative; FYTD (Fiscal Year to Date); and Monthly Reenlistment, 

Retention, and Attrition Reports.  

4. NRMS Calculations and Modeling Support 

Retention measures, predefined calculations and standards within NRMS, 

are used within Corporate and Ad Hoc Reporting. BUPERS-34 uses some of 

these measures to predict reenlistment rates though regression analysis. 

However, the BUPERS-34 Reenlistment Rate Prediction model is not calculated 

within NRMS. NRMS serves to support the model by providing the critical data. 

The following two sections serve as examples of naval personnel 

reenlistment variables (e.g., dimensions) and retention measures that are 

available within NRMS. 

a. NRMS Dimensions 

Dimensions variables allow NRMS to sort data in numerous ways 

to modify, narrow, or expand the scope of NRMS reports. Table 5 presents a 

sample of dimensions in NRMS. 
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Dimension Panel Description 

Armed Forces 
Qualification Test (AFQT) 

The panel allows you to query AFQT scores by 
category (e.g., CAT 1) and then by score. 

Members (Branch) The members panel allows you to select USN (active 
duty), USNR (reservist), or both for your report. 

Length of Service (LOS) The LOS panel allows you to sort by Zone. 
Number of Months This panel allows you to sort by a specific time 

period (e.g., FY to date, 12-month cumulative) 

Table 5.   NRMS Sample Dimension Panels   

b. Standard Retention Measures in NRMS 

“Measures” are various calculations that NRMS can perform. Table 

6 lists a sample of the most commonly used Navy standard retention measures, 

and their definitions and computations for active duty personnel as defined in 

NAVADMIN 333/08 (Ferguson, 2008a). 

Measure Definitions and Computations 
Attrition Enlisted personnel lost from the 

Navy prior to their expiration of 
active obligated service (EAOS).  

Attrition Rate The proportion of sailors who 
leave active duty prior to reaching 
their EAOS. Measures Non-
EAOS loss behavior. 

Attrition Rate Computation (Non-EAOS Losses) / (Non-
EAOS Inventory) 

Long Term Extension (LTE) Extension of service greater than 
24 months 

Non-EOAS Inventory Includes all sailors in a particular 
zone who are greater than 90 
days from their EAOS. 

Reenlistment (RE) Formal reenlistment greater than 
24 months 

RE Rate Measures EAOS behavior 

RE Rate Computation (RE + LTE) / (RE + LTE + EAOS 
losses) 

Table 6.   Standard Retention Measures 
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The NRMS is a significant improvement over previous computer 

based retention monitoring systems. It offers users and administrators (e.g., 

BUPERS-34) secure and efficient means to obtain and evaluate retention data 

over the web. Additionally, NRMS is scalable and has the potential to expand its 

capabilities to provide more analytical functions and data for modeling retention 

behavior.  

B. BUPERS-34 REENLISTMENT RATE MODEL 

Using the data pulled from the NRMS database, BUPERS-34 predicts out-

year (i.e., next FY) reenlistment rates and reenlistment numbers using a multi-

variate linear regression prediction method (BUPERS-34, 2009). The general 

multiple linear regression equation is (Montgomery, 2006): 

y= β0 + β1x1 + β2x2 +…+ βkxk +  

Customarily xi is called the independent (predictor or regressor) variable, y 

is called the dependent (response) variable, and  is the statistical error. The β is 

the model coefficient (regression slope) and β0 is the intercept, which are fit 

through the least squares method, and that minimize the sum of the squares of 

the errors. Є are the errors and are assumed to be normally and independently 

distributed with a mean of zero and a constant variance (NID [0, σ2]). 

BUPERS-34 has developed separate prediction models for reenlistment 

zones A, B, and C. These zones are considered the most significant to maintain 

operational readiness. The FY2010 BUPERS-34 Multiple Linear Regression 

response and predictor variables for zones A, B, and C are shown in Table 7. 

The current BUPERS-34 Reenlistment Rate Model predicts the reenlistment rate 

at the organization level (Navy aggregate) vice at the unit (e.g., command, 

squadron) or enlisted rating level (e.g., Aviation Technician, Personnel Man).  
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Variable Variable Description 

Zone A 
y Reenlistment Rate. Reenlistment rate data from the previous 11 

FYs is obtained from NRMS. 
x1 End Strength. Change in zone A end-strength from the previous 11 

FYs is obtained from NRMS. 
x2 Unemployment Rate. Unemployment rate data from the previous 

11 calendar years (CY) is obtained from the Bureau of Labor 
Statistics. 

x3 Attrition Rate. Attrition rate data from the previous 11 FYs is 
obtained from NRMS. 

Zone B 
y Reenlistment Rate. Reenlistment rate data from the previous 15 

FYs is obtained from NRMS. 
x1 End Strength. Total end-strength at the start of the FY for previous 

15 FYs is obtained from NRMS. 
x2 Unemployment Rate. Unemployment rate data from the previous 

15 calendar years (CY) is obtained from the Bureau of Labor 
Statistics. 

x3 Attrition Rate. Attrition rate data from the previous 15 FYs is 
obtained from NRMS. 

Zone C 
y Reenlistment Rate. Reenlistment rate data from the previous 15 

FYs is obtained from NRMS. 
x1 End-Strength. End-strength data at the start of the FY for sailors 

with 10-13 years LOS is obtained for the previous 15 FYs from 
NRMS. 

x2 Unemployment Rate. Unemployment rate data from the previous 
15 calendar years (CY) is obtained from the Bureau of Labor 
Statistics. 

x3 Attrition Rate. Attrition rate data from the previous 15 FYs is 
obtained from NRMS. 

Table 7.   Zones A, B, and C Response and Predictor Variables 

Each zone (A, B, and C), is individually modeled at the organization level 

in order to predict enlisted reenlistment rates for each zone. Reenlistment zones 

are consistent with SRB zones A, B, and C as defined in NAVADMIN 333/08 

(Ferguson, 2008a). To remain consistent with the prescribed reenlistment zones, 

NRMS calculates and reports Navy retention measures, such as, reenlistment 

rate, attrition rate, and end strength, which are used in the BUPERS-34 model.  
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As observed in Table 7, the model variables for zone A, B, and C are 

extremely similar. Each of the models contains the variables “Attrition Rate,” 

“Unemployment Rate,” and “End Strength.” These three models differ in the 

way their respective end strength prediction variable is calculated. Zone A uses 

the last 11 FY years of respective variable data (i.e., reenlistment rate, attrition 

rate, end strength, and unemployment rate) and its end strength is computed by 

calculating the total numeric change in zone A end strength from the previous 

two FYs. For example, FY 2010 zone A change in end strength was 1,474 which 

was calculated by subtracting the total zone A end strengths for FY2009 

(150,655)  by FY2008 (149,181).  

Zone B uses the last 15 years of respective variable data; End Strength 

is computed by the total Navy end strength at the start of the FY. Similar to zone 

B, zone C uses the last 15 years of data for its model. End Strength is 

calculated from the start of the FY for sailors with a length of service from 10 to 

13 years. 

Unemployment rates are derived from the Bureau of Labor Statistics. 

BUPERS-34 uses the total national unemployment rate from either the last 11 or 

15 calendar years (vice fiscal years) for zone A, or B and C, respectively. 

Depicted in Figure 2 is the BUPERS-34 FY 2010 multiple linear regression 

process for predicting reenlistment rates.  



Attrition 
Rate (FY)

Unemploy-
ment Rate 

(CY)

Change in 
Zone A  End-

Strength 
(FY)

Zone 
Reenlistment 

Rate Prediction 
(FY)

The previous 15 FY 
years of respective 

zone data is accessed 
from NRMS.

The previous 11 FY 
years of data is 

accessed from NRMS.

The previous 15 CY 
years of respective 

zone data is accessed 
from BLS.

Multi-variate 
Linear 

Regression 
Analysis 
(Excel)

The previous 15 FY 
years of respective 

zone data is accessed 
from NRMS.

Reenlist-
ment 

Rate (FY)

End-
Strength at 
Start of FY 

for LOS 
10-13

Total End-
Strength at 
Start of FY

Zones 
(FY) 

A

B

C The previous 15 FY 
years of data is 

accessed from NRMS.

The previous 15 FY 
years of data is 

accessed from NRMS.

The model for each 
zone has a different 

end-strength 
calculation

Zones A, B, & C are 
modeled independently

 

Figure 2.   BUPERS-34 Zones A, B, and C Linear Regression Model Process For 
Predicting FY10 Reenlistment Rates 

1. BUPERS-34 FY 2010 Zone A Regression Analysis Process and 
Prediction 

Data is collected for the response and predicator variables for each zone 

from NRMS and the Bureau of Labor Statistic (BLS) to build a data set and 

perform regression analysis. To illustrate the BUPERS-34 regression analysis 

process and reenlistment rate prediction, zone A is used as an example.  
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The data for FY09-FY10 used to fit the zone A model is shown in Table 8. 

Fiscal Year 

Y 
Reenlistment 

Rate 

X1 
Change in Zone 
A End-Strength 

X2 
Unemployment 

Rate 

X3 
Attrition Rate 

1999 0.4755 2004 0.042 0.1341 
2000 0.5141 7170 0.040 0.1289 
2001 0.6005 10636 0.047 0.1089 
2002 0.5885 9901 0.058 0.1015 
2003 0.6021 8480 0.060 0.0829 
2004 0.5081 -7173 0.055 0.0737 
2005 0.5319 -2793 0.051 0.0779 
2006 0.5149 -10048 0.046 0.0768 
2007 0.4585 -10163 0.046 0.0840 
2008 0.5061 -7292 0.058 0.0905 
2009 0.5566 -1942 0.089 0.0843 
2010 ? 1474 0.094 (Estimate) 0.0721 

Table 8.   BUPERS-34 FY 2010 Zone A Data Set 

Multiple linear regression is performed with the zone A data set using 

Excel resulting in the output shown in Table 9: 

SUMMARY OUTPUT    
Regression Statistics    

Multiple R 0.958015072    
R Square 0.917792878    
Adjusted R 
Square 0.882561255    
Standard Error 0.016737155    
Observations 11    

  Coefficients 
Standard 

Error t Stat P-value 
Intercept 0.649646482 0.051207182 12.68663 4.37E-06 

X1 
Change in Zone 
A End-Strength 6.68541E-06 8.30815E-07 8.046814 8.78E-05 

X2 
Unemployment 

Rate 0.541799053 0.455838599 1.188577 0.273361 
X3 

Attrition Rate -1.53488826 0.357542556 -4.29288 0.003598 

 

Table 9.   BUPERS-34 FY 2010 Zone A Regression Analysis Results 

 



Because there are only 11 observations (Figure 3), it is hard to see if there 

is a violation of NID. However, because this data is in a time series it is assumed 

that correlation among the data may exist. This is because the data collected is 

ordered by year and there may be trends in rates from one year to the next. 

 

Figure 3.   BUPERS-34 Zones A Residual by Predicted Plot 

From the results in Table 9, the fitted regression equation can be written 

as: 

Yzone A= 0.649 + 0.000007x1 + 0.541x2 - 1.534x3 

Because BUPERS-34 is required to predict FY reenlistment rates in 

August of the preceding year, August and September values are estimated to 

derive a final FY value to be multiplied by their respective coefficient in the fitted 

regression equation (above). Subsequently, in order to use the linear regression 

equation as a forecasting tool to predict the zone reenlistment rates for FY10, the 

FY attrition rate and change in zone A end strength for FY2009 is partially 

estimated, and the unemployment rate for FY10 is predicted by a Department of 

the Navy economist (Chilson, personal communication, 2010). 

For the FY10 reenlistment rate prediction, predicator variable data was 

obtained through NRMS up to August and estimated values were made from that 

data resulting in a FY year-end value resulting in a Change in Zone A End-

Strength of 1474 sailors, and a Attrition Rate of 7.2 percent. The Department of 
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the Navy predicted an Unemployment Rate for CY 2010 of 9.4 percent (Chilson, 

personal communication, 2010). A reenlistment rate of 59.5 percent was 

calculated from the following fitted equation: 

.595 = 0.649 + 0.0000068*(1474) + 0.541*(.094) - 1.534*(.072) 

2. BUPERS-34 FY 2010 Zone Reenlistment Rate 

Table 10 summarizes BUPERS-34 FY 2010 reenlistment rate predictions 

for zones A, B, & C: 

 ZONE A 

Reenlistment 
Rate  

ZONE B 

Reenlistment 
Rate  

ZONE C 

Reenlistment 
Rate  

BUPERS 34 
Prediction 

59.5 percent  

 

69.5 percent  

 

84.2 percent   

Table 10.   BUPERS-34 FY 2010 Zone Reenlistment Rate  (From Chilson, 
2009) 

C. FISCAL YEAR REENLISTMENT RATES AND NUMERIC RETENTION 
GOALS 

Near the end of each FY, BUPERS-34, Enlisted Community Managers 

(ECM), End Strength planners (N104), and N13 convene as a working group to 

determine the next FY retention goals. The BUPERS-34 reenlistment rate 

predictions are used as reenlistment expectations for zones A, B, and C and are 

used to in identify the need for potential force shaping actions if goals and 

expectations diverge. The ECMs and end strength planners provide their 

recommendations for manpower requirements (e.g., enlisted rating needs) and 

end strength targets (e.g., total Navy personnel), respectively. N13 facilitates the 

working group’s process to resolve manpower requirements and end strength 

targets resulting in an enlisted retention goal recommendation that best balances 

enlisted rating needs with end-strength assumptions and the BUPERS-34 

reenlistment rate prediction. 
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Near the end of FY 2009, the working group determines FY 2010 retention 

goals (Table 11).  

 ZONE A 

Reenlistment Rate 
/ 

Reenlistment 
Number 

ZONE B 

Reenlistment Rate 
/ 

Reenlistment 
Number 

ZONE C 

Reenlistment Rate 
/ 

Reenlistment 
Number 

ECM Continuation 
Need 

70 percent / 18,246 52 percent / 8,262 63 percent / 5,827 

N104 

End-Strength 
Assumptions 

58 percent / 13,293 

 

61.1 percent / 8,494 

 

85.8 percent / 6,235

BUPERS 34 
Prediction 

59.5 percent/ 
13,225 

69.5 percent / 8,650 

 

84.2 percent / 6,050 

 

Recommendation 59 percent / 13,500 60 percent / 8,300 71 percent / 5,800 

Table 11.   FY10 Retention Goals (From Chilson, 2009) 

The working group’s recommendation is forwarded to N1 for approval. N1 

modifies the recommendation as necessary to adjust to new data, insights and/or 

requirements since delivery the working group’s recommendation.  

In Figure 4, a flow of the retention process illustrates how the “All Navy FY 

2010 Retention Goals” are determined and how the retention goals are resolved, 

approved, reported to the Secretary of the Navy and Congress, and distributed to 

the Fleet for implementation.  

 



 

Figure 4.   BUPERS-34 Reenlistment Rate Prediction and Reporting Process 
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D. SUMMARY 

The BUPERS-34 Reenlistment Rate Prediction model predicts zone 

reenlistment rates for the succeeding FY at the aggregate level (i.e., Navy as a 

whole). The model uses non-compensation variables (Table 7) for zones A, B, 

and C. Their corresponding data is collected for the last 11-15 years from NRMS 

and the BLS based on data available for the respective zone, and then BUPERS-

34 uses Excel to conduct multiple linear regression on the respective zone data 

to determine the coefficients for zones A, B, and C FY reenlistment rates (Figure 

2). The resulting coefficients are multiplied by a predicted unemployment rate for 

the upcoming FY and the ending FY values for the current year’s end strengths 

and attrition rates.  

The resulting zone reenlistment rate predictions serve as a base line to 

assist in establishing Navy retention goals to meet end strength targets and 

manpower requirements for the upcoming FY (Table 10). BUPERS-34, 

BUPERS-32, N100, and N13 consolidate their information and reconcile their 

differences resulting in their retention goal recommendations (Table 11) being 

forwarded to N1 for final approval and made into policy (Figure 4). 

The focus of this thesis is on evaluating the current reenlistment rate 

model and developing a plan for improving the predictive capability of the model. 

There are several problems with the current reenlistment rate model. The 

following descriptions illustrate the three main problems with the current model:  

 Violation of Assumptions 

o The current model uses regression analysis to make 
predictions on time series data. The assumption used in 
linear regression is that the error (residuals) are NID(0, 2).  

o In some of the data, a strong correlation among the residuals 
can be observed. This violation in assumption will cause 
problems with the model results. For example, the variance 
may actually be higher than reported.  
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 Use of Insignificant Variables 

o The linear regression model was developed in FY08 using 
variables that today (and at that time) are no longer useful in 
the prediction.  

o Without continuously evaluating the fit of the model, there 
are variables that have become insignificant in terms of 
predicting reenlistment rate. 

o The use of insignificant variables in a model can cause over 
dispersion problems and lead to inadequate results  

 Prediction within the Model  

o The linear regression model uses several variables to fit 
reenlistment rates for each zone A, B, and C. Some of these 
variables require predictions in order to make a forecast for 
future values of reenlistment rate, which makes the model 
difficult to use and adds more variability to the response.  

The problems highlighted above provide additional motivation for the 

research in this thesis. Chapter IV presents an evaluation of the current model 

and Chapter V shows the development of several alternative models that could 

be used in place of the current prediction model.  
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IV. EVALUATION OF THE CURRENT REENLISTMENT RATE 
PREDICTION MODEL 

Chapter III presented the NRMS database used to pull, sort, and store 

variables of interest to BUPERS-34. At the end of the chapter, several problems 

with the current model were highlighted. This chapter looks into the problems in 

further detail.  

Section A in this chapter evaluates the current model. Specifically, the 

assumption of NID (0, 2) residuals is evaluated and the significance of the 

current variables is studied. Section B presents a unique application of 

experimental design. The unique application of experimental design techniques 

is used to evaluate the use of data, both in terms of frequency of time slices and 

amount of historical data used, and also the use of variables to study the fit of the 

regression model to the data.  

A. EVALUATING THE CURRENT BUPERS-34 MODEL FOR PREDICTING 
REENLISTMENT RATE 

At the end of Chapter III, several problems with the current model are 

described. Two of those problems are the violation of assumptions for the linear 

model and the use of insignificant variables in the current model. Those problems 

are illustrated in this section.  

1. Violation of Assumptions  

Using linear regression for time series data is not always advisable 

because time series data can be significantly correlated. This will lead to a 

violation of the assumptions used for fitting least squares. An illustration of this 

violation is shown in Figure 5. Figure 5 presents the time series plot, 

autocorrelation function, and partial autocorrelation function for Zone B 

reenlistment rate data.  



 

Figure 5.   Zone B Time Series Correlation  

The plots in Figure 5 indicate that the Zone B reenlistment data is both 

autocorrelated and partially autocorrelated by the significant lags shown. The 

correlation between data one lag apart (one year in this data) is 0.663.  

In regression analysis, the residuals are assumed to be normally and 

independently distributed. With such heavy dependencies in both the response 

data (reenlistment rate) and several of the inputs, there is an occasional violation 

of the independence assumption in the residuals. Time series analysis can be 

used to remove this correlation. In many of the regressions that are analyzed, the 

assumption of NID residuals is not violated. However, there are several instances 

of violation, such as the one pointed out in Figure 5. Based on the work in this 

thesis, the recommendation is to use time series analysis or perform a 

transformation on the response if a violation is detected.  
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2. Use of Insignificant Variables  

The current BUPERS-34 model was developed and deployed for use in 

2008. Changes in Navy manpower and personnel policies (e.g., end strength 

requirements, bonus levels) and the economy (e.g., increasing unemployment 

rate) have led to changes in reenlistment behavior. When using linear regression, 

it is important to evaluate the fit of the model. This includes determining whether 

independent variables in the model have a significant impact on the response 

(dependent) variable.  

Table 12 shows the BUPERS-34 Reenlistment Rate Prediction adjusted 

R-squared, which givens an indication of model fit, and also shows the p-value 

for each of the variables in zones A, B, and C. An asterisk next to a p-value 

indicates that the variable is significant to the model at α= .05. Consequently, the 

unemployment rate is found to be insignificant to measuring the variability in 

zone A, B, & C reenlistment rate prediction models. However, BUPERS-34 

includes unemployment rate in their prediction model for all three zones. 

Zones Model Fit Independent Variables (without interactions)

  
Adjusted R-

square  
End 

Strength 
Unemployment 

Rate 
Attrition 

Rate 
Zone A 0.883 0.0001* 0.2684 0.0035* 
Zone B 0.461 0.0409* 0.0751 0.0145* 
Zone C 0.756 0.0002* 0.0991 0.0000* 

    * P Value Significance at .05 

Table 12.   BUPERS-34 FY 2010 Reenlistment Rate Prediction Model 
Adjusted R-Squared and P-values for Each Variable 

As indicated with the values in Table 12, unemployment rate is not 

statistically significant in fitting the linear regression model in the BUPERS-34 

model.  Consequently, the model is over-fitted because unemployment rate is not 

statistically significant at the targeted .05 significance level. This will result in poor 

predictive performance. 
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B. DESIGNING AN EXPERIMENT TO EVALUATE MODEL FIT 

An experiment is a test or series of tests in which purposeful changes are 

made to the input variables of a process or system so that we may observe and 

identify the reasons for changes that may be observed in the output response 

(Montgomery, 2008). This thesis conducts an experimental design as the basis to 

determine the significant input variables in the BUPERS-34 Reenlistment Rate 

Prediction model by determining which variables are most influential on the 

response (output) variable (i.e., standard deviation and adjusted R-square of the 

fitted models). In this effort, a statistical design of experiments (e.g., factor 

screening, regression analysis) is used so that the appropriate data is collected 

and analyzed using statistical methods, resulting in objective conclusions. 

Factor screening is used in this process to systematically vary input 

factors in order to identify those factors that produce a significant change in the 

response variables. Additionally, factor screening is used to estimate the 

magnitude and direction of individual factor effects as well as factor interaction 

effects on the response variable. In general, factor screening is best when 

conducted using only two levels of the factors. In this experiment a low-level and 

a high-level screening is used. 

Multivariate linear regression is used to determine what factors in the 

screening experiment have a significant effect on the response. In a linear 

regression model the response variable (y), is related to predictor variables (xi), 

through the following general equation: 

y = β0 + β1x1 + β2x2 + β1,2x1x2 + … + βnxn + є 

The standard multivariate linear regression model tests the following hypothesis: 

H0 : β0 = β1 = β2 = …= βn = 0; where n represents the number of coefficients 

H1 : At least one coefficient does not = 0 
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In order to gain insight into the construction and robustness of the 

BUPERS-34 Reenlistment Rate Prediction model and areas that can improve the 

model, an experiment is performed on the model to analyze different processes 

that can be conducted on the model that are affected minimally by external 

sources of variability. Standard deviation and adjusted R-square are the 

measurements used to determine and evaluate which process is best. 

This design of experiments (DOX) seeks to analyze the strength and 

effects of the variables in the current BUPERS-34 Navy reenlistment forecasting 

method and improve the performance of the model and/or consider alternative 

models for improvement. At the end of the previous section, the presence of 

insignificant variables in the current model is discussed. In the following 

subsections, a design of experiments is used to systematically test the influence 

of inclusion of model terms, amount of data used, and period of data on the fitted 

regression models produced. 

1. Selection of the Response Variables 

In this experiment, there are two response variables (Y1, Y2), standard 

deviation and adjusted R-square. Standard deviation measures how closely the 

model fits the data. Thus, with lower standard deviation the model is assured to 

more accurately represent reenlistment rate. Subsequently, the end goal of the 

BUPERS-34 model is to be able to better predict zone reenlistment rates. 

Adjusted R-square provides insight on how significant the factors, or variables, 

are fitted in the model. Unlike R-square, adjusted R-square adjusts for the 

number of model terms and increases only if the new term improves the model 

more than would be expected by chance. 

2. Choice of Factors, Levels, and Range 

Current forecasting procedures for reenlistment rate are broken into three 

zones: A, B, and C. As previously discussed, these three zones have separate 

retention models, broken down by zone (e.g., years in the navy), and are 
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categorized by Zone A (0-6 years), Zone B (6-10 years), and Zone C (10-14 

years). Each of the three zones has eight runs (experiments) for a total of 24 for 

this experimental design. 

To review, the BUPERS-34 Reenlistment Rate Prediction model variables 

used to predict reenlistment rate by zone are applied in this DOX and are listed in 

Table 13. 

 

Zone A variables Zone B variables Zone C variables 

Unemployment Rate Unemployment Rate Unemployment Rate 
Zone A Attrition Rate Zone B Attrition Rate Zone C Attrition Rate 

Zone A Change in Fiscal 
Year End Strength 

Fiscal Year Navy Enlisted 
End Strength 

Fiscal Year Navy 
Enlisted End Strength 

For Years 10-13 

Table 13.   Design of Experiment Zone Variables  

The purpose of this experimental design is to analyze the effect of the 

factors; amount of data, model type, and data frequency on standard deviation 

and adjusted R-square values. Table 14 lists these factors with their associated 

levels and data type. 

 

Factor Levels Modeling Type 

Amount of Data 5 year (-1) 

10 year (+1) 

Nominal 

Model Type Main Effects (-1) 

Two Factor Interaction (2FI) 
(+1) 

Nominal 

Data Frequency Annual (-1) 

Monthly (+1) 

Nominal 

Table 14.   Design of Experiment Factors and Levels 
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Design of experiments is used to determine the impact of the three factors 

(β1 = amount of data, β2 = model type, and β3 = data frequency) on the two 

response variables which are the standard deviation and adjusted R-squared. 

The equations tested are: 

Y1 = β0 + β1x1 + β2x2 + β2x3 + β12x1x3 + β12x1x3 + β23x2x3 + є 

Y2 = β0 + β1x1 + β2x2 + β2x3 + β12x1x3 + β12x1x3 + β23x2x3 + є 

where Y1 is standard deviation and Y2 is adjusted R-squared. For example if β1 is 

significant for zone A, and the response variable is Y1, then it will be concluded 

that amount of data has an impact on the standard deviation of the regression fit 

for zone A data.   

3. Experimental Design 

A 3-factor design with eight runs (23) for each zone is constructed using 

JMP 8, a statistical software package, and is depicted in Table 15. The design 

displays the coded units (-1, +1), which corresponds to the low (-1) and high (+1) 

levels for each variable. Refer to Montgomery (2008) for a detailed description of 

factorial design. 



 

Table 15.   3-Factor Experimental Design Randomization for Each Zone 

4. Analyzing the Experiment 

Eight runs are generated per zone for zones A, B, C. Table 16 records the 

standard deviation and adjusted R-square for each experiment. 

The experiment excludes three runs because these runs contain less than 

the required degrees freedom in the two-factor interaction, resulting in insufficient 

data available to effectively analyze. Subsequently, Table 16 from JMP 8 depicts 

the results of 21 runs after removing the insufficient data.  
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Table 16.   Adjusted Design for the BUPERS-34 Reenlistment Rate Prediction 
Model 

A row in the design matrix (first three and last column of Table 16) 

corresponds to a single experiment. As an example of how to conduct each 

experiment and collect response data, consider the first row in Table 16. Row 1 

represents the results of an experiment using zone A data (see last column in 

Table 16). This experiment uses the low level of model type, low level of amount 

of data and low level for the rate of data. To run this experiment then, a 

reenlistment rate model is created for zone A using all three main effects 

(unemployment rate, attrition rate, and end strength) for the past five years, using 

yearly data. Once this model is created, the standard deviation and adjusted R-

squared are recorded. In this experiment the standard deviation is 0.0191 and 

the adjusted R squared is 0.8923.  

The results of the individual experiments are listed in Table 16. 

Approximately half of the adjusted R-square experiments, had values that are 

quite low, indicating that those particular experiments did not result in an 
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adequate fit. In general, those experiments were generated with monthly data. 

Further investigation within the individual experiments indicates a possible 

seasonality trend within the data. 

a. Statistical Analysis of the Response Variable- Standard 
Deviation 

The initial linear regression (main effects) results for the DOX 

model with the dependent variable (Y1) as standard deviation is depicted in 

Figure 6. As observed, the only significant effects are the variables “Rate of 

Data” and “Zone.” 

 

 

Figure 6.   DOX Main Effects Results 

Subsequently, a two-degree factorial and polynomial with stepwise 

linear regression is used, resulting with most variables having significance and 

an adjusted R-square of 99 percent (Figure 7). 
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Figure 7.   DOX Two-Factor Interaction Results 

It is observed from the interaction profile (Figure 8), resulting from 

the two-degree factorial and polynomial stepwise procedure, that Rate of Data 

and Zone A, B, and C has the greatest amount of variation (i.e., standard 

deviation effects), as well as, significance to standard deviation. As observed in 

the highlighted circle in Figure 8, as Rate of Data goes from annual to monthly, 

standard deviation varies significantly. This indicates that the level used for Rate 

of Data is significant to standard deviation. Because we have previously 

observed possible seasonal effects for monthly data (Table 16), and the level of 

Rate of Data is significant to Y1, then the use of annual data in the model may be 

the best process to minimize standard deviation. 
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Figure 8.   DOX Two-Factor Interaction Profiles 

Subsequently, those two effects, Rate of Data and Zone A, B, and 

C, were isolated in a new model resulting in a high adjusted R-square of 97 

percent, a small standard error of .007, and significant values for all but one 

variable as observed in Figure 9. 

 

 

Figure 9.   DOX Rate of Data and Zone A, B, and C Interaction Results 
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b. Statistical Analysis of Response Variable- Adjusted R-
square 

Referring to Table 16, as with standard deviation, there is a 

possible seasonality within the monthly data (when compared to the annual 

data), that results with low adjusted R-square values.  

The initial linear regression (main effects) results for the DOX 

Adjusted R-square model are similar (in insignificance) to the results of those 

when the response variable Y1. Subsequently, a stepwise fit with a two-degree 

factorial (2FI) and polynomial is used when the response variable is Y2 with the 

results depicted in Figure 10.  

 

 

Figure 10.   DOX Adjusted R-square Rate of Data and Zone Interaction Results 

The results from the two-degree factorial and polynomial linear 

regression show that Rate of Data and Amount of Data are most significant to 

adjusted R-square (Figure 10). In examining the residuals, which are estimates 

of experimental error obtained by subtracting the observed responses from the 

predicted responses, it is observed in the Residual by Predicted Plot (in Figure 
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11) that the residuals form a funnel shape. This may indicate that transforming 

the response variable is required, or may indicate that the data points (i.e., 

random variables) are not NID, and, subsequently, may not have the same 

probability distribution and not be statistically independent. 

 

 

Figure 11.   DOX Adjusted R-square Residual Plot For Rate Data and Zone 
Interaction 

5. Experimental Design Insights 

This design of experiments is used to analyze the fit of the current 

BUPERS-34 Reenlistment Rate Prediction method and improve the performance 

of the model and/or discover insights that can be used to develop alternative 

models to improve reenlistment rate predictions. Rate of Data with the 

interaction of Zone A, B, C are significant with the dependent variable, Y1. The 

factors, Rate of Data and Amount of Data appeared to be significant with the 

dependent variable, Y2. 

d to analyze the fit of the current 

BUPERS-34 Reenlistment Rate Prediction method and improve the performance 

of the model and/or discover insights that can be used to develop alternative 

models to improve reenlistment rate predictions. Rate of Data with the 

interaction of Zone A, B, C are significant with the dependent variable, Y1. The 

factors, Rate of Data and Amount of Data appeared to be significant with the 

dependent variable, Y2. 
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The values in Table 16 consistently indicate that the level, monthly data, 

within the factor, Rate of Data, results in poor adjusted R-square values and 

large standard deviation values relative to all other model factors and levels.  

The following summarizes the DOX insights: 

1. Fiscal Year (i.e., annual) data produces lower standard deviations 

and higher adjusted R-square values in regression analysis. 

2. Two-factor interaction does not improve performance. 

3. There is a significant interaction between Zone and Rate of Data 

(i.e., monthly, annual). This indicates that the use of annual data 

over monthly data may lead to a more robust model because it 

minimizes variation in measuring retention effects for zones A, B, 

and C. 

4. 10-year fiscal data produces more significant results than 5-year 

fiscal data due to the 5-year fiscal year data having insufficient 

amount of degrees of freedom. There is not a sufficient amount of 

historical data to conduct an experiment for a 15-year or greater 

period. 

5. Zone A 10-year annual data produces the best adjusted R-square 

and standard deviation results (with significant p-values) over the 

21 experiments followed by zone C and then zone B.  

6. 5-year annual data also produces excellent adjusted R-square 

values with low standard deviation values. However, upon review of 

the prediction variable p-values from these experiments, some are 

found to be insignificant which would lead to a poor model fit. 
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V. DEVELOPING A NEW MODEL FOR PREDICTING 
REENLISTMENT RATE 

The analysis gained from the study of related literature in Chapter II, 

reviewing and examining of the BUPERS-34 Reenlistment Rate Prediction model 

methodology in Chapter III, and insights from Chapter IV’s experimental design 

provide great direction in developing a new prediction model for BUPERS- 34 to 

predict reenlistment rates by zone in the aggregate.  

This chapter presents several alternative mathematical models that can be 

used for predicting future reenlistment rates. The goal of the alternative models is 

to improve both accuracy and precision in the predictions made. Improving 

accuracy means that the Navy will have a better idea what the true reenlistment 

rates will be and improving precision equates to reduced prediction variance.  

Several alternative options for predicting reenlistment rate are 

investigated. Time series analysis is suggested to deal with the violation of 

assumptions in the linear regression model and the addition of a variable—“SRB” 

—is suggested as an improvement to the model.  

A. TIME SERIES EXPERIMENT 

A time series experiment is conducted to analyze and forecast 

reenlistment rate annual data.  Because a time series is a set of observations 

{y1, y2, ... ,yn} taken over a series of equally-spaced  time periods, as is the case 

with the reenlistment rate annual data, this experiment is of value to investigate 

and determine the strength of time series forecasting on reenlistment rate annual 

data.  
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In this time series experiment, an Integrated Moving Average (IMA) model 

is selected which predicts future values of a time series by a linear combination 

of its past values and a series of errors (also known as random shocks or 

innovations). The IMA model used is equivalent to the exponentially weighted 

moving average (EWMA) technique.  

Figure 12 is a time series IMA model. Displayed are autocorrelations and 

partial autocorrelations of the BUPERS-34 5 year zone B data modeled in time 

series. These indicate how and to what degree each point in the series is 

correlated with earlier values in the series. The IMA is selected as the best 

specified Autoregressive Integrated Moving Average (ARIMA) model to perform a 

maximum likelihood fit of the data to time series for the 5 year zone B 

reenlistment rates, resulting with an adjusted R-square of 87 percent. For 

consistency of the experiment, the IMA model is used to determine the adjusted 

R-square and standard deviations of each run. 

 



 

Figure 12.   Zone B, 5-Year, Annual, IMA Time Series Model 

The adjusted R-square and standard deviation for each time series IMA 

(1,1) run is recorded in Table 17 and compared to their respective values derived 

earlier (Table 16) using regression analysis. Two runs for each zone (e.g., 

Amount of Data, five and ten year) are conducted.   
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Run Amount 
of Data  
5 yr (-) 

10yr (+)  

Rate of 
Data 

Annual(-) 
Monthly(+) 

Table 17 
Standard 
Deviation 

(Y) 

Table 17 
Adjusted 
R-square 

Zones 
A, B,C

Adjusted R-
square Annual 

Time Series 
IMA(1,1) 

Standard 
Deviation 

Annual Time 
Series IMA 

(1,1) 
1 - - 0.0191 0.8923 A -0.1221 0.0369 
2 + - 0.0167 0.8831 A -0.4571 0.0573 
3 - - 0.0103 0.9776 B 0.8765 0.0167 
4 + - 0.0365 0.6623 B 0.3318 0.0524 
5 - - 0.0007 0.9987 C 0.1514 0.0141 
6 + - 0.0119 0.7699 C 0.2557 0.0218 

Table 17.   Time Series Design for the BUPERS-34 Enlisted Retention 

A least squares regression is then performed from the adjusted R-square 

values (in Table 17). Most of the runs show minimal significance (e.g., ability to 

predict future outcomes) to the model as indicated by the p-values in Figure 13, 

resulting in an adjusted R-square of 72 percent, and indicate that the individual 

model runs (in Table 17) may not be good predictors for future outcomes.  
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Figure 13.   Time Series IMA Regression Analysis on Adjusted R-square 

A least squares regression is performed for the standard deviation values 

resulting in an adjusted R-square of 71 percent. There are no significant 

variables in the results captured in Figure 14. 
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Figure 14.   Time Series IMA Regression Analysis on Standard Deviation 

1. Time Series Experimental Design Insights 

The time series IMA experiment does not yield any significant information 

other than this particular ARIMA model does not produce a significant 

improvement for predicting reenlistment rates. 

As presented in Chapter IV, the prediction variable, “Unemployment 

Rate,” in the current linear model, is not significant when combined with the other 

model variables. This section explores removing the insignificant model variables 

and adds a variable representing “SRB,” which is suggested as a significant 

variable in the literature. Additionally, as observed in Chapter IV’s experimental 

design, the data is varied over different periods to investigate significance. 

Before dropping insignificant variables from regression analysis in the 

following models, this thesis defines a variable to be an insignificant variable if 

the p-value is less than the significance level of 0.05. In probability theory, this is 
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the acceptable level of a Type I error; it is the risk of falsely rejecting the null 

hypothesis. Subsequently, lower p-values mean lower probabilities of committing 

Type I errors. Additionally, variable selection plays a critical role in determining 

the relevance of a prediction variable on a response variable (e.g., Reenlistment 

Rate). For example, BUPERS-34 uses total navy end strength to predict zone B 

reenlistment rates. However, zone B end strength, a much smaller and specific 

subset of total navy end strength may be a more relevant and appropriate 

variable to measure the zone B reenlistment rate.  

Model variables are investigated in detail and additional variables are 

researched to include various unemployment rates acquired from the BLS, 

Consumer Confidence data, various end strength calculations, aggregate pay 

increases, reenlistment programs, and SRB data. From the literature review, 

SRB data is found to be significant in enlisted retention. SRB is a significant lever 

in Navy enlisted retention because it is easily modified and can be continuously 

adjusted to meet retention targets. Each zone is analyzed to see if SRB is 

significant to the model. Additionally, several models are developed over various 

time periods to analyze and provide the statistical variation necessary to produce 

significant estimates to predict the reenlistment rate. 

Stepwise multivariate regression analysis is conducted on zones A, B, and 

C. Results are found in Table 18. 

 
Zones Model Fit Dependent Variables 

  
Adjusted R-

square  
End 

Strength 
Unemployment 

Rate 
Attrition 

Rate 

 
Zone SRB

Zone A 0.916 .0005*  .0026* .0439* 
Zone B 0.869 .0046* .0256* .0018*  
Zone C 0.749   .0004*  

    * P Value Significance at 0.05  

Table 18.   New Reenlistment Rate Prediction Model Fits 

The resulting Multiple Linear Regression response and predictor variables 

for zones A, B, and C are summarized in Table 19. 
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Variable Variable Description 

Zone A 
y Reenlistment Rate. Reenlistment rate data from the previous 10 

FYs is obtained from NRMS. 
x1 End Strength. Change in zone A end-strength from the previous 10 

FYs is obtained from NRMS. 
x2 Attrition Rate. Attrition rate data from the previous 10 FYs is 

obtained from NRMS. 
x3 Zone SRB. Fiscal year zone A SRB totals from the previous 10FYs 

is obtained from N13. 
Zone B 

y Reenlistment Rate. Reenlistment rate data from the previous 10 
FYs is obtained from NRMS. 

x1 End Strength. Zone B end-strength at the end of the FY for 
previous 10 FY’s is obtained from NRMS. 

x2 Unemployment Rate. Unemployment rate data from the previous 
10 calendar years (CY) is obtained from the Bureau of Labor 
Statistics. 

x3 Attrition Rate. Attrition rate data from the previous 10 FYs is 
obtained from NRMS. 

Zone C 
y Reenlistment Rate. Reenlistment rate data from the previous 11 

FYs is obtained from NRMS. 
x1 Attrition Rate. Attrition rate data from the previous 11 FYs is 

obtained from NRMS. 

Table 19.   Zones A, B, and C Response and Predictor Variables 

2. Zone A Alternative Reenlistment Rate Prediction Model  

Zone A SRB is found significant to predicting zone A reenlistment rates. 

By including Zone A SRB for the last 10 FYs and removing Unemployment 

Rate, which had a p-value of .268 in the BUPERS-34 prediction model, as a 

predictive variable for zone A,  adjusted R-square improved in the Reenlistment 

Rate Prediction model from .883 to .916 (Figure 15). Residuals appear to be NID 

(0, σ2), and the removal of insignificant variables resolves the over dispersion 

problems that existed in the BUPERS-34 Zone A prediction model. 

 



From the results in Figure 15, the fitted regression equation can be written 

as: 

Yzone A RE Rate= 0.634 + 0.0000057x1  – 1.76555x2+.000000006x3 

 

 

Figure 15.   Zone A Alternative Model Regression Analysis 

3. Zone B Alternative Reenlistment Rate Prediction Model 
Results 

The unemployment rate is found significant to predicting zone B 

reenlistment rates using the last 10 FYs. Goldberg says by reducing the period of 

the prediction model from the last 15 FYs (as in the BUPERS-34 model) to the 
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last 10 FYs, the statistical variation (as seen with unemployment rates) 

necessary to produce significant estimates to predict the reenlistment rate 

significantly improves (Goldberg, 1986). Additionally, a new variable, “Zone B 

End Strength,” replaces the BUPERS-34 end strength variable which measures 

“Total Navy End Strength” used in the prediction model. Consequently, 

adjusted R-square significantly improves in the Reenlistment Rate Prediction 

model from .461 to .869 (Figure 16), greatly increasing the model’s prediction 

capability. Residuals appear to be NID (0, σ2), and the removal of insignificant 

variables and adjusting the period to the last 10 FYs, resolves the over 

dispersion problems that exist in the BUPERS-34 zone B prediction model, and 

significantly increases the model’s predictive capability. 

From the results in Figure 16, the fitted regression equation can be written 

as: 

Yzone B RE Rate= 0.9951 - 0.0000066x1  + 1.70959x2 - 6.77031x3 

 



 

Figure 16.   Zone B Regression Analysis 

4. Zone C Alternative Reenlistment Rate Prediction Model 
Results 

Zone C Attrition Rate explains 75 percent of the variability in predicting 

zone C reenlistment rates over the last 11 FYs. Removing Unemployment Rate 

as a predictive variable for zone C results in no significant change to the model’s 

fit with adjusted R-square remaining nearly the same as the BUPERS-34 

prediction model (Figure 17). The removal of Unemployment Rate as a 

prediction variable resolves the over dispersion problems that existed in the 

BUPERS-34 zone C prediction model because it does not explain any of the 

variability in the model and is not statistically significant. 
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From the results in Figure 17, the fitted regression equation, with only 

attrition rate as an input, can be written as: 

Yzone C RE Rate= 0.887 - 4.4554x1 

 

Figure 17.   Zone C Regression Analysis 
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VI. CONCLUSIONS 

A. SUMMARY 

BUPERS-34 predicts zone A, B, and C reenlistment rates using 

multivariate linear regression within Excel. However, the BUPERS-34 

Reenlistment Rate Prediction model used to predict reenlistment rates for Navy 

FY09 and FY10 retention goals has three main problems; it violates the 

assumption that the residual errors are NID (0, σ2), it uses insignificant variables 

and/or inferior variable selection, and some prediction variables require 

predictions in order to make forecasts for future values. Additionally, model 

variables are never investigated for 2FI by BUPERS-34. 

This thesis uses several statistical techniques available within the 

statistical software JMP 8 and recommends an alternative model to each of the 

three zones, A, B, and C, that is more robust than the current BUPERS-34 

prediction models. The alternative models eliminate insignificant variables and/or 

inferior variable selection, improve model robustness and model fit for all zones, 

and investigate and incorporate additional compensation  and non-compensation 

variables that effect zone reenlistment rate predictions. All of which lead to 

improved prediction capabilities. Table 20 provides a comparison between the 

BUPERS-34 adjusted R-squared values and the proposed model adjusted R-

squared values. While the adjusted R-squared for zone C is slightly decreased, 

the model is considered improved because of the removal of insignificant 

variables, which add noise to the predictions. 
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Zone BUPERS-34 

Adjusted R-square 

Alternative Model 

Adjusted R-square 

Zone A .883 .916 

Zone B .461 .869 

Zone C .756 .749 

Table 20.   Zones A, B, and C Model Fit Comparisons 

The recommended models are still regression models. These models only 

use ten years of historical data and do not appear to violate the residual 

assumptions. Further work should investigate using a time series in conjunction 

with regression analysis. In addition, while these alternative models may be the 

best for this year, it is recommended that each zone model be updated, 

reevaluated, and checked for significance and fit on an annual basis.  

B. FUTURE RECOMMENDATIONS AND RESEARCH 

1. Total Force Database 

Retention measures (e.g., reenlistment rates and attrition rates) and other 

retention variables are stored and calculated in the NRMS, Navy’s authoritative 

source of retention. NRMS is the primary data source used to provide timely and 

accurate reporting and analysis of reenlistment, retention, and attrition data to the 

Fleet. However, NRMS has several drawbacks. For example, SRB, a dimension 

within NRMS and a significant variable within the alternative prediction model for 

zone A, is not reliably populated due to limited resources and/or funding. Some 

calculations are inconsistent. Policy guidance mandates that retention 

calculations are to be standardized; however, end strength calculations differ 

between N100 and BUPERS-34 depending on if calculation is used towards 

retention or towards end strength forecasts (i.e., N100 includes short term 

extensions in RE denominator) (Chilson, 2009).  
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The requirement for BUPERS-34 and other analysts to develop prediction 

models and/or forecasts requires empirical data that is not always available. The 

need for one standardized tool that is designed to provide researchers with ready 

access to the personnel, manpower and related data required for empirical 

analysis of retention, enlistment, and other types of behavior that are of policy 

interest to the Navy is critical.  

2. Aggregate Modeling 

BUPERS-34 is required to predict zone reenlistment rates and numerical 

totals for the out-year FY retention goals. Some of the historical data available is 

constrained to shorter periods that lead to poor models due to insufficient 

degrees of freedom, or questionable results due to minimal data points. 

Further research is recommended using Time Series analysis to model 

reenlistment rate behavior. As observed in Chapter IV, seasonality within the 

monthly data indicates that the residual errors are not NID (0, σ2). Further 

investigation using various seasonality models may result in improving the 

predictability for the zone reenlistment rates. 
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